direct product, metacyclic, supersoluble, monomial, A-group
Aliases: C32×F5, C15⋊2C12, C5⋊(C3×C12), (C3×C15)⋊4C4, D5.(C3×C6), (C3×D5).3C6, (C32×D5).3C2, SmallGroup(180,20)
Series: Derived ►Chief ►Lower central ►Upper central
C5 — C32×F5 |
Generators and relations for C32×F5
G = < a,b,c,d | a3=b3=c5=d4=1, ab=ba, ac=ca, ad=da, bc=cb, bd=db, dcd-1=c3 >
(1 41 21)(2 42 22)(3 43 23)(4 44 24)(5 45 25)(6 31 26)(7 32 27)(8 33 28)(9 34 29)(10 35 30)(11 36 16)(12 37 17)(13 38 18)(14 39 19)(15 40 20)
(1 11 6)(2 12 7)(3 13 8)(4 14 9)(5 15 10)(16 26 21)(17 27 22)(18 28 23)(19 29 24)(20 30 25)(31 41 36)(32 42 37)(33 43 38)(34 44 39)(35 45 40)
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15)(16 17 18 19 20)(21 22 23 24 25)(26 27 28 29 30)(31 32 33 34 35)(36 37 38 39 40)(41 42 43 44 45)
(2 3 5 4)(7 8 10 9)(12 13 15 14)(17 18 20 19)(22 23 25 24)(27 28 30 29)(32 33 35 34)(37 38 40 39)(42 43 45 44)
G:=sub<Sym(45)| (1,41,21)(2,42,22)(3,43,23)(4,44,24)(5,45,25)(6,31,26)(7,32,27)(8,33,28)(9,34,29)(10,35,30)(11,36,16)(12,37,17)(13,38,18)(14,39,19)(15,40,20), (1,11,6)(2,12,7)(3,13,8)(4,14,9)(5,15,10)(16,26,21)(17,27,22)(18,28,23)(19,29,24)(20,30,25)(31,41,36)(32,42,37)(33,43,38)(34,44,39)(35,45,40), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45), (2,3,5,4)(7,8,10,9)(12,13,15,14)(17,18,20,19)(22,23,25,24)(27,28,30,29)(32,33,35,34)(37,38,40,39)(42,43,45,44)>;
G:=Group( (1,41,21)(2,42,22)(3,43,23)(4,44,24)(5,45,25)(6,31,26)(7,32,27)(8,33,28)(9,34,29)(10,35,30)(11,36,16)(12,37,17)(13,38,18)(14,39,19)(15,40,20), (1,11,6)(2,12,7)(3,13,8)(4,14,9)(5,15,10)(16,26,21)(17,27,22)(18,28,23)(19,29,24)(20,30,25)(31,41,36)(32,42,37)(33,43,38)(34,44,39)(35,45,40), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45), (2,3,5,4)(7,8,10,9)(12,13,15,14)(17,18,20,19)(22,23,25,24)(27,28,30,29)(32,33,35,34)(37,38,40,39)(42,43,45,44) );
G=PermutationGroup([[(1,41,21),(2,42,22),(3,43,23),(4,44,24),(5,45,25),(6,31,26),(7,32,27),(8,33,28),(9,34,29),(10,35,30),(11,36,16),(12,37,17),(13,38,18),(14,39,19),(15,40,20)], [(1,11,6),(2,12,7),(3,13,8),(4,14,9),(5,15,10),(16,26,21),(17,27,22),(18,28,23),(19,29,24),(20,30,25),(31,41,36),(32,42,37),(33,43,38),(34,44,39),(35,45,40)], [(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15),(16,17,18,19,20),(21,22,23,24,25),(26,27,28,29,30),(31,32,33,34,35),(36,37,38,39,40),(41,42,43,44,45)], [(2,3,5,4),(7,8,10,9),(12,13,15,14),(17,18,20,19),(22,23,25,24),(27,28,30,29),(32,33,35,34),(37,38,40,39),(42,43,45,44)]])
45 conjugacy classes
class | 1 | 2 | 3A | ··· | 3H | 4A | 4B | 5 | 6A | ··· | 6H | 12A | ··· | 12P | 15A | ··· | 15H |
order | 1 | 2 | 3 | ··· | 3 | 4 | 4 | 5 | 6 | ··· | 6 | 12 | ··· | 12 | 15 | ··· | 15 |
size | 1 | 5 | 1 | ··· | 1 | 5 | 5 | 4 | 5 | ··· | 5 | 5 | ··· | 5 | 4 | ··· | 4 |
45 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 4 | 4 |
type | + | + | + | |||||
image | C1 | C2 | C3 | C4 | C6 | C12 | F5 | C3×F5 |
kernel | C32×F5 | C32×D5 | C3×F5 | C3×C15 | C3×D5 | C15 | C32 | C3 |
# reps | 1 | 1 | 8 | 2 | 8 | 16 | 1 | 8 |
Matrix representation of C32×F5 ►in GL6(𝔽61)
13 | 0 | 0 | 0 | 0 | 0 |
0 | 47 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
47 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 60 |
0 | 0 | 1 | 0 | 0 | 60 |
0 | 0 | 0 | 1 | 0 | 60 |
0 | 0 | 0 | 0 | 1 | 60 |
50 | 0 | 0 | 0 | 0 | 0 |
0 | 50 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 1 | 0 | 0 |
G:=sub<GL(6,GF(61))| [13,0,0,0,0,0,0,47,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[47,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,60,60,60,60],[50,0,0,0,0,0,0,50,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,1,0] >;
C32×F5 in GAP, Magma, Sage, TeX
C_3^2\times F_5
% in TeX
G:=Group("C3^2xF5");
// GroupNames label
G:=SmallGroup(180,20);
// by ID
G=gap.SmallGroup(180,20);
# by ID
G:=PCGroup([5,-2,-3,-3,-2,-5,90,1804,219]);
// Polycyclic
G:=Group<a,b,c,d|a^3=b^3=c^5=d^4=1,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d^-1=c^3>;
// generators/relations
Export